Efficient method to create integration-free, virus-free, Myc and Lin28-free human induced pluripotent stem cells from adherent cells

نویسندگان

  • Anant Kamath
  • Sara Ternes
  • Stephen McGowan
  • Anthony English
  • Rama Mallampalli
  • Alan B Moy
چکیده

AIM Nonviral induced pluripotent stem cell (IPSC) reprogramming is not efficient without the oncogenes, Myc and Lin28. We describe a robust Myc and Lin28-free IPSC reprogramming approach using reprogramming molecules. METHODS IPSC colony formation was compared in the presence and absence of Myc and Lin28 by the mixture of reprogramming molecules and episomal vectors. RESULTS While more colonies were observed in cultures transfected with the aforementioned oncogenes, the Myc and Lin28-free method achieved the same reprogramming efficiency as reports that used these oncogenes. Further, all colonies were fully reprogrammed based on expression of SSEA4, even in the absence of Myc and Lin28. CONCLUSION This approach satisfies an important regulatory pathway for developing IPSC cell therapies with lower clinical risk.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells.

The generation of induced pluripotent stem cells (iPSCs) provides the opportunity to use patient-specific somatic cells, which are a valuable source for disease modeling and drug discovery. To promote research involving these cells, it is important to make iPSCs from easily accessible and less invasive tissues, like blood. We have recently reported the efficient generation of human iPSCs from a...

متن کامل

Generation of mouse induced pluripotent stem cells without viral vectors.

Induced pluripotent stem (iPS) cells have been generated from mouse and human somatic cells by introducing Oct3/4 and Sox2 with either Klf4 and c-Myc or Nanog and Lin28 using retroviruses or lentiviruses. Patient-specific iPS cells could be useful in drug discovery and regenerative medicine. However, viral integration into the host genome increases the risk of tumorigenicity. Here, we report th...

متن کامل

Novel codon-optimized mini-intronic plasmid for efficient, inexpensive, and xeno-free induction of pluripotency

The development of human induced pluripotent stem cell (iPSC) technology has revolutionized the regenerative medicine field. This technology provides a powerful tool for disease modeling and drug screening approaches. To circumvent the risk of random integration into the host genome caused by retroviruses, non-integrating reprogramming methods have been developed. However, these techniques are ...

متن کامل

Establishment and the importance of chicken pluripotent stem cells and their role in vaccine production: review article

Chick embryos are a great historical research model in basic and applied sciences. Along with other animal models, avian and specifically chicken embryo has been attended, as well. Avian fertilized eggs as a natural bioreactor are an efficient tool for producing recombinant proteins and vaccines manufacturing. Due to the limitations of birds' eggs for viral replication, avian stem cells culture...

متن کامل

Efficient Generation of Integration-Free iPS Cells from Human Adult Peripheral Blood Using BCL-XL Together with Yamanaka Factors

The ability to efficiently generate integration-free induced pluripotent stem cells (iPSCs) from the most readily available source-peripheral blood-has the potential to expedite the advances of iPSC-based therapies. We have successfully generated integration-free iPSCs from cord blood (CB) CD34(+) cells with improved oriP/EBNA1-based episomal vectors (EV) using a strong spleen focus forming vir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2017